
Combatting Spam Using
Sendmail, MIMEDefang and

Perl

Copyright 2004 David F. Skoll

Roaring Penguin Software Inc.
(Booth #21)

2

Administrivia
� Please turn off or silence cell phones,

pagers, Blackberry devices, etc...
� After the tutorial, please be sure to fill

out an evaluation form and return it to
the USENIX folks.

3

Overview
� After this tutorial, you will:

� Understand how central mail filtering works.
� Know how to use MIMEDefang to filter mail.
� Be able to integrate SpamAssassin into your

mail filter.
� Know how to implement mail filtering policies

with MIMEDefang and Perl.
� Know how to fight common spammer tactics.

4

Outline
� Introduction to Mail Filtering
� Sendmail's Milter API
� MIMEDefang Introduction, Architecture
� Writing MIMEDefang Filters
� SpamAssassin Integration
� Advanced Filter Writing
� Fighting Common Spammer Tactics
� Advanced Topics
� Policy Suggestions

5

Assumptions
� I assume that you:

� Are familiar with Sendmail configuration. You
don't need to be a sendmail.cf guru, but
should know the basics.

� Are familiar with Perl. Again, you don't need
to be able to write an AI program in a Perl
one-liner, but should be able to read simple
Perl scripts.

� Are running the latest version of Sendmail
8.12 or 8.13 on a modern UNIX or UNIX-like
system.

6

Why Filter Mail?

� The old reason: to stop viruses.
� The new reason: to stop spam and

inappropriate content.
� Blocking viruses is easy. Block .exe and

similar files, and test against signature
databases.

� Blocking spam is hard, but becoming
increasingly important. Organizations
can even face lawsuits over
inappropriate content.

Mail filtering is required for many reasons. In addition to the reasons given
on the slide, you might need to filter outgoing mail as well to prevent virus
propagation, dissemination of sensitive information, etc.

7

One-slide Overview of Mail
Delivery

MUA

MTA MTA MTA

Mail
Store MUA

SMTP

SMTP SMTP

LDA

POP/
IMAP

MUA = Mail User Agent. What you use to send and read mail. Eg: Mozilla, Evolution
MTA = Mail Transfer Agent. Eg: Sendmail, Postfix, Exim, qmail
Mail Store = Where mail is stored until it is read. Usually in /var/spool/mail
LDA = Local Delivery Agent. Program which performs final delivery into the mail store
POP = Post Office Protocol. A method for retrieving mail from a mail store
IMAP = Internet Message Access Protocol. A better protocol than POP/POP3.
SMTP = Simple Mail Transfer Protocol. The language used by MTA's to
 talk to each other.

(Procmail)

In general, e-mail may traverse a series of MTA's before arriving at the final
MTA. The path an e-mail takes can depend on network conditions,
whether or not any servers have crashed, etc.

Every arrow on the slide represents an opportunity for filtering mail.

Filtering on the “LDA” arrow is the procmail approach: Filter during final
delivery to the mail store.

Filtering on the “POP/IMAP” arrow is the most common approach. This is
the approach taken by many MUA's, as well as programs like POPFile.

Filtering on the SMTP arrow is the MIMEDefang approach. It does real-time
filtering during the SMTP conversation.

8

Filtering with Procmail
� The local delivery agent does filtering.
� PRO: Easy to customize rules per-

recipient. Well-known and tested.
� CON: Inefficient. Messages sent to

several users are processed several
times.

� CON: Local users only. Difficult to use
procmail on a store-and-forward relay.

� CON: SMTP transaction is complete by
the time Procmail is invoked.

Procmail is an old and well-established approach to doing mail filtering. It
filters mail during delivery into the local mail store.

Procmail's rule language is powerful, but not as well known as Perl. If you
invoke external programs from a procmail filter, you pay a large
performance penalty – an external program must be invoked for each
delivery.

Procmail cannot influence the SMTP conversation. By the time it is
invoked, the STMP conversation is almost over – we are at the end of the
DATA phase.

9

Central Filtering (Topic of This
Talk)

� The MTA does the filtering.
� PRO: Efficient. Each message filtered

once, regardless of number of recipients.
� PRO: Can modify the SMTP dialog.

Amazingly useful, as you'll see...
� PRO: Can filter relayed mail, not just local.
� CON: Harder (but not impossible) to

implement per-recipient filter rules.

10

Where MIMEDefang Fits
Sendmail MTA

mimedefang
Milter

mimedefang-multiplexor

mimedefang.pl

Perl modules:
SpamAssassin
MIME::Tools, etc.

Incoming e-mail Delivered e-mail

Milter protocol

MIMEDefang protocol

MIMEDefang protocol

E-mail is accepted,queued and routed as usual by Sendmail.

Sendmail communicates with the mi medef ang program using the Milter
protocol. mi medef ang is linked against libmilter.

mi medef ang passes requests to mi medef ang- mul t i pl exor using its
own MIMEDefang protocol.

mi medef ang- mul t i pl exor picks a free mi medef ang. pl program to
actually do the filtering.

SpamAssassin is integrated into mi medef ang. pl at the Perl module level.
Various other Perl modules, such as Anomy::HTMLCleaner, may be
integrated into mi medef ang. pl .

11

The MIMEDefang Philosophy
� MIMEDefang provides mechanism; you

provide policy.
� MIMEDefang gives you lots of little tools

to manipulate mail. It's up to you to
hook them together in just the way you
want.

� MIMEDefang design and implementation
emphasize security, flexibility and
performance, in that order.

12

Why a Filtering API?
� Sendmail's configuration file rule sets

are probably Turing-complete.
� But they are awkward (to say the least!)

for real-world filtering tasks.
� Hence, Sendmail authors created an

API for external filters to process mail.
� Allows the use of more appropriate

filtering languages (although reference
implementation is in C only.)

13

Why Perl?
� Perl is much better than C for text

manipulation.
� CPAN has many, many e-mail

manipulation modules (and lots of other
useful code) available for free.

� Many more system administrators know
Perl than C.

� There are milters in other languages
(Python, Tcl), but they lack access to
the incredible resources of CPAN.

14

Why Perl? (2)
� Hastily-designed configuration

languages inevitably accumulate warts
and bugs.

� Perl was an ideal extension language
for MIMEDefang, as well as an
implementation language.

� Perl gives the ultimate in flexibility, and
we don't need to worry about parsing
configuration files.

15

Sendmail's Milter API
� Milter (Mail fILTER) is both a protocol

and a library.
� Designed by the Sendmail development

team, and has been part of Sendmail
since 8.10. Matured in 8.12.

� Lets filters “listen in” to the SMTP
conversation and modify SMTP
responses.

� Extremely powerful and can let you do
amazing things with e-mail.

Milter is intimately connected with the SMTP conversation. It can modify
responses to SMTP commands, as well as alter mail contents.

16

Milter Architecture

Sendmail Daemon

Sendmail Daemon

Sendmail Daemon

Milter 1

Milter 2

Milter N

Sendmail is single-threaded, but forks into multiple processes. The milter library
is multi-threaded, and a given Sendmail installation can have multiple mail filters
(filters 1 through N above.)

TCP or UNIX-domain Socket

17

Milter API Operation
� At various stages of the SMTP

conversation, Sendmail sends a
message over the socket to the milter.

� The milter library invokes a callback into
your code. It then sends a reply
message back to Sendmail containing
the return value from your callback.

� In addition, you can call milter library
functions that send special messages to
Sendmail to modify aspects of the
message.

18

Typical SMTP Conversation

C: Connect t o ser ver
S: 220 ser ver _host name ESMTP Sendmai l 8. 12. 7/ 8. 12. 7. . .
C: HELO cl i ent _host name
S: 250 ser ver _host name Hel l o c l i ent _host name, pl eased. . .
C: MAI L FROM: <df s@r oar i ngpengui n. com>
S: 250 2. 1. 0 <df s@r oar i ngpengui n. com>. . . Sender ok
C: RCPT TO: <f oo@r oar i ngpengui n. com>
S: 250 2. 1. 5 <f oo@r oar i ngpengui n. com>. . . Reci pi ent ok
C: RCPT TO: <bar @r oar i ngpengui n. com>
S: 250 2. 1. 5 <bar @r oar i ngpengui n. com>. . . Reci pi ent ok
C: DATA
S: 354 Ent er mai l , end wi t h " . " on a l i ne by i t sel f
C: (t r ansmi t s message f ol l owed by dot)
S: 250 2. 0. 0 h0AJVcGM007686 Message accept ed f or del i ver y
C: QUI T
S: 221 2. 0. 0 ser ver _host name cl osi ng connect i on

19

Typical SMTP Conversation
with Milter

C: Connect t o ser ver
S: 220 ser ver _host name ESMTP Sendmai l 8. 12. 7/ 8. 12. 7. . .
C: HELO cl i ent _host name
S: 250 ser ver _host name Hel l o c l i ent _host name, pl eased. . .
C: MAI L FROM: <df s@r oar i ngpengui n. com>
S: 250 2. 1. 0 <df s@r oar i ngpengui n. com>. . . Sender ok
C: RCPT TO: <f oo@r oar i ngpengui n. com>
S: 250 2. 1. 5 <f oo@r oar i ngpengui n. com>. . . Reci pi ent ok
C: RCPT TO: <bar @r oar i ngpengui n. com>
S: 250 2. 1. 5 <bar @r oar i ngpengui n. com>. . . Reci pi ent ok
C: DATA
S: 354 Ent er mai l , end wi t h " . " on a l i ne by i t sel f
C: (t r ansmi t s message f ol l owed by dot)
S: 250 2. 0. 0 h0AJVcGM007686 Message accept ed f or del i ver y
C: QUI T
S: 221 2. 0. 0 ser ver _host name cl osi ng connect i on

*
*
*
*
*

*

*= response-modification opportunity *= filtering opportunity

20

Milter C API Functions

� Initialization:
� smf i _r egi st er Register a filter
� smf i _set conn Specify socket
� smf i _set t i meout Set timeout
� smf i _mai n Enter main milter loop

� You “register” a filter and tell what kinds of
callbacks you're interested in, and whether
or not you might modify the message
headers and body.

A milter can communicate with Sendmail over TCP, so milter programs do
not need to run on the same machine as Sendmail.

21

Milter API Functions: Data
Access

� smf i _get symval Get value of a Sendmail macro
� smf i _get pr i v Get arbitrary private data
� smf i _set pr i v Set arbitrary private data
� smf i _set r epl y Set SMTP reply code
� Sendmail macros lets you access a lot of useful info.
� Private data useful for storing thread-specific data.
� Can set SMTP reply to anything you like.

The smf i _get symval routine gives you access to Sendmail macros.
This can be quite powerful in conjunction with Sendmail rulesets. You can
use rulesets to set macro values and then retrieve these macro values in
the milter.

smf i _get pr i v and smf i _set pr i v let you keep per-connection state.

smf i _set r epl y lets you set the numeric and textual SMTP reply code
and text.

22

Milter API: Message
Modification

� smf i _addheader Add a header
� smf i _chgheader Change a header
� smf i _addr cpt Add a recipient
� smf i _del r cpt Delete a recipient
� smf i _r epl acebody Replace message body
� Recipient functions affect envelope recipients,

not headers.

The smf i _addr cpt and smf i _del r cpt modify Sendmail's internal
recipient list. They do not modify any message headers.

smf i _r epl acebody lets you replace the entire message body, and forms
the basis for many content-filtering functions.

23

Milter API: Callbacks
� xxf i _connect Called when connection made
� xxf i _hel o Called after HELO
� xxf i _envf r om Called after MAIL FROM:
� xxf i _envr cpt Called after RCPT TO:
� xxf i _header Called for each header
� xxf i _eoh Called at end of all headers
� xxf i _body Called for each “body block”
� xxf i _eom Called at end of message
� xxf i _abor t Called if message aborted
� xxf i _cl ose Called when connection closed

These callbacks are not defined in the milter library. Instead, you must
define them in the filter. At the appropriate phase of the SMTP dialog, the
callback functions are called with appropriate arguments. Their return
value determines how the SMTP conversation proceeds.

In a typical SMTP conversation, the callbacks go like this:

Connect: xx f i _connec t
HELO xx f i _hel o
MAIL FROM:xx f i _env f r om
RCPT TO: xx f i _env r cpt
RCPT TO: xx f i _env r cpt
DATA (nothing)
Message sent xx f i _header

xx f i _header
xx f i _eoh
xx f i _body
xx f i _body
xx f i _eom

QUIT xx f i _c l ose

24

Milter API: Threading
� Milter library is multi-threaded, but you

have no control over generation of
threads.

� Milter library takes care of creating
threads as required.

� Callbacks must therefore be thread-
safe, and must use the smf i _get pr i v
and smf i _get pr i v functions to maintain
state.

Do not be tempted to use POSIX threads functions inside a Milter. Libmilter
is free to change the way it handles threading. Instead of spawning a new
thread for each connection, a future implementation of libmilter might
maintain a pool of long-lived worker threads.

25

Callback Types

� Connection oriented: Apply to
connection as a whole.
xxf i _connect , xxf i _hel o,
xxf i _c l ose.

� Recipient oriented: Apply to a single
recipient only. xxf i _envr cpt

� Message-oriented: Apply to a message.
All other callbacks are message-
oriented.

26

Callback Return Values
� SMFI S_CONTI NUE: Continue processing
� SMFI S_REJECT: For connection-oriented

callback, close the whole connection. For
message-oriented, reject the message. For
recipient-oriented, reject only this recipient.

� SMFI S_DI SCARD: For message- or recipient-
oriented routine, silently discard message.

� SMFI S_ACCEPT: Accept without further filtering.
� SMFI S_TEMPFAI L: Return a temporary-failure

code for recipient, message or connection.

27

Pros and Cons of Milter API
� Pro: Sendmail's implementation is not too buggy

as of Sendmail >= 8.12.5.
� Pro: Quite efficient. Filters do what they need

and no more.
� Pro: Can modify SMTP return codes.
� Con: Written in C. C is not the best language for

parsing e-mail messages. Hard for end-users to
write filters.

� Con: Multi-threaded. Easy to make dumb
programming errors; some pthreads
implementations leave a lot to be desired.

28

MIMEDefang
� MIMEDefang is a GPL'd, Perl-based

mail filter. It uses Milter to interface with
Sendmail.

� Used in thousands of different sites.
� Larger MIMEDefang installations

process >1 million e-mail messages per
day.

� MIMEDefang runs on Linux, FreeBSD,
Solaris, Tru64 UNIX, HP-UX, AIX, ...

� www.mimedefang.org

29

Pros and Cons of MIMEDefang
� Pro: You can write your filters in Perl

instead of C.
� Pro: Filters are single-threaded. No

worries about thread-safety.
� Pro: You can use all the CPAN goodies

in existence to manipulate mail.
� Pro: Large user community and many

ready-to-use recipes.
� Con: CPU and memory-intensive.

As you'll see, MIMEDefang uses special techniques to improve the
performance of the Perl filters. In fact, it's arguable whether a C milter with
all of MIMEDefang's capabilites would be much more efficient than
MIMEDefang itself. String manipulation and regular-expression matching
are Perl strengths, and these are what consume most of the time in most
MIMEDefang installations.

30

Getting and Installing
MIMEDefang

� Visit http://www.mimedefang.org and go to
“Download”

� Make sure you have indicated prerequisites
installed.

� Then it's the usual 5-step process:
� t ar xv f z mi medef ang- version. t ar . gz

� cd mi medef ang- version

� . / conf i gur e

� make

� make i ns t al l

31

MIMEDefang Architecture
mi medef ang

mi medef ang- mul t i pl exor

mi medef ang. pl

UNIX-domain socket

Pipes

� Multithreaded mimedefang threads talk to single-threaded
mimedefang-multiplexor

� Multiplexor manages a pool of single-threaded Perl slaves
that do the actual filtering.

mi medef ang. pl mi medef ang. pl

We call the mimedefang process “mimedefang”.

The mimedefang-multiplexor process is called “the multiplexor”

The mimedefang.pl Perl processes are called “the slaves”.

32

The Multiplexor
� The multiplexor is the key to making Perl

scanning work efficiently.
� Multiplexor manages Perl processes. It:

� Feeds idle processes work.
� Manages communication with

mimedefang Milter.
� Kills off processes after they've handled a

certain number of requests (to prevent
Perl memory leaks.)

33

Flow of Data and Commands
� When mimedefang wants some filtering

done by the Perl filter, it issues a
request to the multiplexor.

� The multiplexor finds a free slave and
passes along the request.

� When the slave responds, the
multiplexor passes the response back to
mimedefang.

� The multiplexor tracks free and busy
slaves.

Not every milter callback has a corresponding request/response. For some
milter callbacks, mimedefang simply notes the information in memory or in a
temporary disk file. The milter callbacks are interpreted as follows:

xx f i _connect r el ayok request.
xx f i _hel o Noted in memory.
xx f i _env f r om sender ok request.
xx f i _env r cpt r ec i pok request.
xx f i _header Stored in temporary disk file.
xx f i _eoh Noted in memory.
xx f i _body Stored in temporary disk file.
xx f i _eom scan request.
xx f i _abor t Clean up temprary working directory.
xx f i _c l ose Clean up temporary working directory.

The four requests above will be discussed in detail later. In brief, r el ayok
checks whether the specified machine should be allowed to send mail.
sender ok checks the sender address, r ec i pok checks each recipient
address, and scan asks for the message body to be scanned. During the
scan request, the message can be modified, headers can be added,
changed or deleted, and recipients can be added or deleted.

34

Example Flow
Sendmail mimedefang multiplexor

Client Connects
Records Address

r el ayok request

HELO
Records HELO arg -- uninvolved --

MAIL FROM:
Records Address

sender ok request

RCPT TO:
Records Address

r eci pok request

DATA
Nothing special -- uninvolved --

Mail body
Spools message -- uninvolved --

End of DATA
scan request

Final Reply

35

The MIMEDefang Filter
� The mi medef ang. pl program contains

all the infrastructure needed to parse
and manipulate MIME messages.
mi medef ang. pl supplies mechanism.

� You supply a chunk of Perl code called
the filter. The filter supplies policy. Your
filter determines exactly how
MIMEDefang manipulates your e-mail.

� The distribution includes a sample filter.

36

The MIMEDefang Filter - 2
� Each time mi medef ang. pl starts, it

sources the filter file.
� During execution, mi medef ang. pl

calls various subroutines that you define
in the filter. These subroutines generally
correspond to a MIMEDefang request.

� You do not need to define all (or any) of
the callbacks; if they are not defined,
default no-op functions are used.

37

MIMEDefang Callbacks

Request Callback Function
r el ayok f i l t er _r el ay
sender ok f i l t er _sender
r eci pok f i l t er _r ec i pi ent
scan f i l t er _begi n

f i l t er / f i l t er _mul t i par t
f i l t er _end

Note that the scan request invokes
several callback functions.

38

Callback Caveats
� Callbacks are processed by the first

available Perl slave.
� That means that the f i l t er _r el ay

callback may occur in a different Perl
process than the matching
f i l t er _sender .

� You cannot store state between
callbacks in Perl variables.

� We'll see later how you can store state
between callbacks.

One of the most frequent errors made by MIMEDefang novices is to set a
variable in f i l t er _r el ay and expect it to be available in one of the
subsequent filtering functions. All of the information available to earlier
filtering functions is available to later ones, so you should defer your
decisions and computations until all the information you need is available,
rather than trying to split it up over several callbacks.

Under unusual circumstances (for example, if a value must be calculated in
f i l t er _r el ay that takes a long time to compute, and might be needed
later) you can store state between callbacks.

There are two things you should never do in your filter:

1) Call di e or any other function that will terminate the Perl slave. It will
cause the multiplexor to complain loudly and tempfail the mail.

2) Print anything to STDOUT. That will interfere with communication
between the slave and the multiplexor, and most likely tempfail the mail. If
you must print from your filter, print to STDERR.

39

The f i l t er _r el ay Callback
� Called as: f i l t er _r el ay(host i p,

hos t name)

� host i p is the IP address of relay.
� host name is name (if determined by

reverse-DNS lookup; otherwise
[host i p])

� Note: f i l t er _r el ay is not called
unless mimedefang invoked with - r
option – saves overhead if you don't use
f i l t er _r el ay .

40

f i l t er _r el ay Return Value
� Return value is a two-element list:

(code, message)
� code is a string:

� “CONTINUE” - Accept the host and keep filtering.
� “TEMPFAIL” - Reject with a 4xx tempfail code.
� “REJECT” - Reject with a 5xx failure code.
� “DISCARD” - Pretend to accept, but discard

message.
� “ACCEPT_AND_NO_MORE_FILTERING” - Accept

the host, and do no further filtering on the message.
� If code is “TEMPFAIL” or “REJECT”, then message is

used as the text part of the SMTP reply code.

41

Sample f i l t er _r el ay
�

Let's say we trust the machine 10.7.6.5 implicitly and do
not want to do any filtering for mail from it:

sub f i l t er _r el ay ($$) {
my($host i p, $host name) = @_;
i f ($host i p eq " 10. 7. 6. 5") {

r et ur n(" ACCEPT_AND_NO_MORE_FI LTERI NG" ,
" ") ;

}
r et ur n (" CONTI NUE" , " ") ;

}

42

The f i l t er _sender Callback
�

Call: f i l t er _sender (sender , host i p, host name, hel o)
� sender is the sender's e-mail address (as given in

MAIL FROM: command)
� host i p and host name are same as in

f i l t er _r el ay .
� hel o is the argument to SMTP HELO or EHLO

command. (We cannot tell if caller used HELO or
EHLO.)

� Note: f i l t er _sender is not called unless
mimedefang invoked with - s option – saves overhead
if you don't use f i l t er _sender .

� Return values same as f i l t er _r el ay .

43

Sample f i l t er _sender
�

Silly example: Ban mail from <nogood@baddomain.net>
sub f i l t er _sender ($$$$) {

my($sender , $host i p, $host name, $hel o) = @_;
i f ($sender eq ' <nogood@baddomai n. net >') {

r et ur n (" REJECT" , " I don' t car e f or you. ") ;
}
r et ur n (" CONTI NUE" , " ") ;

}

�

Note the single quotes around the e-mail address... Perl
can bite you if you don't watch out. If you use double-
quotes, it tries to interpolate the array @baddomai n.

44

Resulting SMTP Conversation
t el net ser ver 25
220 ser ver ESMTP Sendmai l . . . et c
HELO me
250 ser ver Hel l o. . . et c
MAI L FROM: <nogood@baddomai n. net >
554 5. 7. 1 I don' t car e f or you.

45

The f i l t er _r ec i pi ent
Callback

�

Called as: f i l t er _r ec i pi ent (r ec i pi ent , sender ,
hos t i p, host name, f i r s t , hel o, r cpt _mai l er ,
r cpt _host , r cpt _addr)

� r eci pi ent is the recipient's e-mail address (as
given in MAIL FROM: command)

� f i r st is the first recipient of this message's e-
mail address.

� r cpt _mai l er , r cpt _host and r cpt _addr
are the Sendmail mailer/host/addr triple
associated with address.

� Rest are same as f i l t er _sender .
� Only called if - t option used.

46

Sample f i l t er _r ec i pi ent

�

Silly example: Ban mail from <nogood@baddomain.net>
unless recipient is postmaster or abuse at our site.

sub f i l t er _r eci pi ent ($$$$$$$$$) {
my($r eci p, $sender , $r est _of _t he_j unk) = @_;
i f ($r eci p eq ' <abuse@our si t e. net >' or

$r eci p eq ' <post mast er @our si t e. net >') {
r et ur n (" CONTI NUE" , " ") ;

}
i f ($sender eq ' <nogood@baddomai n. net >') {

r et ur n(" REJECT" , " I don' t car e f or you. ") ;
}
r et ur n (" CONTI NUE" , " ") ;

}

47

Resulting SMTP Conversation
t el net ser ver 25
220 ser ver ESMTP Sendmai l . . . et c
HELO me
250 ser ver Hel l o. . . et c
MAI L FROM: <nogood@baddomai n. net >
250 2. 1. 0 <nogood@baddomai n. net >. . . Sender
ok
RCPT TO: <abuse@our s i t e. net >
250 2. 1. 5 <abuse@our si t e. net >. . . Rec i pi ent
ok
RCPT TO: <bob@our s i t e. net >
554 5. 7. 1 I don' t car e f or you.

48

More on Callback Return Values
� The three callback functions discussed so far can actually

return a list with up to five elements: (code, msg,
smtp_code, smtp_dsn, delay)

� code is one of “CONTINUE”, “REJECT”, etc.
� msg specifies the message string in the SMTP reply.
� smtp_code is the three-digit SMTP reply code (eg 451)
� dmtp_dsn is the SMTP DSN code (eg 4.7.1)
� delay tells mimedefang to delay for that many seconds

before replying to Sendmail. This delay ties up a milter
thread, not a slave. Used for primitive tar-pitting.

� If you return fewer than 5 elements, mimedefang picks
sensible defaults for the missing ones.

49

The scan request
� scan is different from other requests; it sets in motion

a much more complicated set of actions.
� When the Perl slave receives a scan request, it:

1. Reads and parses the mail message using
MIME::Tools. It creates a MIME::Entity to
represent the message.

2. Calls f i l t er _begi n.

3. For each MIME part, calls f i l t er or
f i l t er _mul t i par t .

4. Calls f i l t er _end.
� All of these actions happen in sequence in a single

slave process.

50

Digression: MIME::Tools
� MIME::Tools is a Perl module for parsing and

generating MIME messages.
� Provides an object-oriented interface for

accessing and setting MIME headers and
body parts.

� Main objects are:
� MIME::Entity, representing a MIME “entity” -- either

a part or a container.
� MIME::Head, representing the headers of a MIME

entity.
� MIME::Body, representing decoded body contents

51

Sample MIME Message
From: Someone <someone@domain.net>
To: David F. Skoll <dfs@roaringpenguin.com>
Subject: HTML Mail
MIME-Version: 1.0
Content-Type: multipart/alternative; boundary=" foo"

This is a multipart message in MIME format.

--foo
Content-Type: text/plain; charset=" iso-8859-1"
Content-Transfer-Encoding: quoted-printable

Don't you love HTML mail?

--foo
Content-Type: text/html; charset=" iso-8859-1"
Content-Transfer-Encoding: quoted-printable

Don't you love HTML mail?

--foo--

52

MIME::Tools Representation

MIME::Entity

Parts

MIME::Head

MIME::HeadMIME::Head

MIME::Body MIME::Body

MIME::EntityMIME::Entity

Multipart/alternative

text/htmltext/plain

Don't you love
HTML mail?

Don't you love
HTML mail?

53

MIME::Entity
� Represents an overall MIME message. Has methods

for:
� Accessing headers (returns a MIME::Head object.)
� Accessing body if not multipart (returns a

MIME::Body object.)
� Accessing parts if multipart (returns a list of

MIME::Entity objects.)
� You can also build up a MIME::Entity with sub-parts

and bodies and have MIME::Tools generate a valid
MIME message.

� MIME::Tools can both parse and generate MIME.

54

MIME::Head
� Represents the headers of a MIME entity.
� Contains convenient methods for accessing

and setting header values.
� Can parse MIME header keyword/value pairs

like "charset=iso-8859-1; filename="foo.bar"
� Can set individual keyword/value pairs in

headers.

55

MIME::Body
� Represents the body (the actual meat) of a

MIME::Entity.
� Can access the decoded contents of the

part. Very important for dealing sanely with
base64 encoding, quoted-printable encoding,
etc.

� Can store the body contents in memory or in
a file. As used in MIMEDefang, always stores
body contents in a file.

� Your filter can access the file and read (or
write) the body contents.

56

Back to the scan request
� mimedefang passes scan information to the Perl filter

in three files. Every mail message has a dedicated,
unique working directory. Before calling your filter
functions, mi medef ang. pl changes to that
directory.

� When the scan request is initiated, the directory
contains three files:

� I NPUTMSG is the raw input mail message.
� HEADERS contains the message headers, one per

line (wrapped headers are “unwrapped”.)
� COMMANDS conveys additional information to the

filter.

57

The I NPUTMSG File
� This file contains the entire message as

received by Sendmail, except the NVT ASCII
line terminators “\r\n” are replaced with
newlines “\n”. Most UNIX programs are
happier with this style of line termination.

� You can open and read this file from your
filter if you wish.

58

The HEADERS File
� This file contains the e-mail headers, one per

line. Multi-line headers are “unwrapped” and
appear on a single line. For example, the
header:

Cont ent - Type: appl i cat i on/ pdf ;
name=" f oo. pdf "

is unwrapped to:
Cont ent - Type: appl i cat i on/ pdf ;

name=" f oo. pdf "

� This makes parsing headers simple; just
open and read . / HEADERS. Each line you
read corresponds to exactly one header.

59

The COMMANDS File
� This file conveys extra information to the

filter, such as:
� Envelope sender and recipients.
� Message subject and Message-ID.
� Relay host IP address and host name.
� Argument to HELO/EHLO command.
� Sendmail queue identifier.
� Values of certain Sendmail macros.

� This file is handled by mi medef ang. pl and
isn't for general consumption. It is
documented in the mimedefang-protocol
man page.

60

Scan phase 1: Parse
� The I NPUTMSG file is parsed and split into its

various MIME parts. These are stored in a
subdirectory called Wor k/ .

� Parsing is done by MIME::Tools and is
transparent to your filter.

61

Scan phase 2: Call
f i l t er _begi n

� The f i l t er _begi n function is called. It
can access I NPUTMSG, HEADERS,
COMMANDS and all the message parts under
Wor k/ .

� Appropriate for initializing global variables
and doing “global” analysis of the message.
Example:
sub f i l t er _begi n () {

$FoundVi r us = 0;
i f (message_cont ai ns_vi r us()) {

Remember t hi s f or l at er !
$FoundVi r us = 1;

}
}

62

Scan phase 3: Call f i l t er
and f i l t er _mul t i par t

� mimedefang.pl executes the following
pseudocode:
f or each $ent i t y (@Al l _MI ME_Ent i t i es) {

$f name = get _f i l ename($ent i t y) ;
$ext = get _ext ensi on($f name) ;
$t ype = get _mi me_t ype($ent i t y) ;
i f (i s_mul t i par t ($ent i t y)) {

f i l t er _mul t i par t ($ent i t y , $f name, $ext , $t ype) ;
} el se {

f i l t er ($ent i t y , $f name, $ext , $t ype)
}

}

63

Scan phase 4: Rebuild message and
call f i l t er _end

� Because the f i l t er function can modify the
message (as you'll see later), mimedefang.pl
rebuilds the message as a new MIME::Entity
object.

� It then calls f i l t er _end with a single
argument: The rebuilt MIME::Entity.

� This is the place for “global” message
modifications that depend on information
collected in earlier phases.

64

Built-in Variables
� During a scan request, several Perl global

variables are defined:
� $Sender : The envelope sender address.
� @Reci pi ent s : A list of envelope recipients.
� $Subj ect : Contents of the Subject: header.
� $Rel ayAddr : IP address of sending relay.
� $Rel ayHost name: Host name of sending relay.
� $Hel o: Arguments to SMTP HELO/EHLO command.
� $QueueI D: Sendmail Queue-ID.
� $MessageI D: Contents of Message-ID: header.

� ... plus others in mimedefang-filter man page.

65

Built-in Functions
� MIMEDefang has many built-in functions useful for

your filter. They are divided into classes:
� Functions to accept, modify or reject individual

parts.
� Functions that accept or bounce entire messages.
� Virus-scanner integration routines.
� Header modification routines.
� Recipient modification routines (add/del recipients.)
� Notification routines.
� Message modification in filter_end.
� SpamAssassin integration routines.
� Miscellaneous functions.

66

Accepting or Rejecting Parts
� Inside f i l t er , you can accept or reject

parts. Example:
sub f i l t er {

my ($ent i t y, $f name, $ext , $t ype) = @_;

Boss says . x l s ar e OK
r et ur n act i on_accept i f ($ext eq ' . x l s ') ;

But we know . exes ar e bad
r et ur n act i on_dr op_wi t h_war ni ng(' Evi l . exe r emoved')

i f ($ext eq ' . exe') ;

Common Wi ndoze vi r us vect or
r et ur n act i on_dr op_wi t h_war ni ng(' Evi l (?) audi o')

i f ($t ype eq ' audi o/ x- wav') ;

Def aul t i s act i on_accept i f we dr op of f f unct i on
}

Complete list of part-oriented functions:

� act i on_accept : Accept the part. This is the default.
� act i on_accept _wi t h_war ni ng: Accept the part, but add a warning

note to the message.
� act i on_def ang: “Defang” the part by changing its filename and MIME

type to something innocuous. Not recommended; annoys recipients.
� act i on_dr op: Silently delete the part from the message.
� act i on_dr op_wi t h_war ni ng: Delete the part from the message and

add a warning note to the message.
� act i on_ext er nal _f i l t er : Run the part through an external

program and replace it with the filtered results.
� act i on_quar ant i ne: Same as ac t i on_dr op_wi t h_war ni ng, but

also quarantines the part in a special quarantine directory.
� act i on_r epl ace_wi t h_ur l : Same as ac t i on_dr op, but places

entity in a special place where it can be served by a Web server, and
puts the URL in the mail message.

� act i on_r epl ace_wi t h_war ni ng: Replace the part with a plain-text
warning. Differs from ac t i on_dr op_wi t h_war ni ng in that the
warning is placed inline instead of the part, rather than at the end of the
message.,

67

Accepting or Rejecting Entire
Message

� You can bounce or discard the entire
message:
sub f i l t er {

my ($ent i t y , $f name, $ext , $t ype) = @_;

Common v i r us
i f ($f name eq ' message. z i p' &&

 $Subj ec t =~ / ^ your account / i) {
ac t i on_bounce(' We do not accept v i r uses ') ;

}

Send r ude message t o / dev/ nul l
i f ($Subj ec t =~ / enl ar ge. * peni s/ i) {

ac t i on_di scar d() ;
}

}

Complete list of message-oriented functions:

� act i on_bounce: Reject the message with a 5xx SMTP failure code.
Note that act i on_bounce does not actually generate a bounce
message. It simply fails the SMTP transaction.

� act i on_di scar d: Accept the message with a 2xx SMTP success code,
but discard it (it never gets delivered.)

� act i on_t empf ai l : Tempfail the message with a 4xx SMTP
temporary-failure code.

� act i on_quar ant i ne_ent i r e_message: Quarantine the entire
message, but do not affect delivery. You can follow this with one of the
previous three functions if you want delivery affected.

All of these functions can be called from f i l t er _begi n, f i l t er ,
f i l t er _mul t i par t and f i l t er _end.

68

Virus-Scanner Integration
� There are two virus-scanner functions:

� message_cont ai ns_v i r us scans the entire
message in one invocation. This is generally
quicker than scanning individual parts. If all you
want to do is bounce/reject/quarantine virus
messages, this is fine.

� ent i t y_cont ai ns_vi r us scans individual
parts. If you just want to remove viruses but allow
the rest of the message through, use the
ent i t y_cont ai ns_vi r us function. (But this is
of dubious value with modern viruses, whose
messages rarely contain anything useful.)

� Installed virus scanners are detected by configure
script, and/or can be specified in your filter code.

69

Virus-Scanner Example
sub f i l t er _begi n {

i f (message_cont ai ns_vi r us()) {
r et ur n act i on_di scar d() ;

}
}

70

Header Modification Routines
� You can add, modify or delete headers:

� act i on_add_header adds a header.
� act i on_del et e_header deletes a header.
� act i on_del et e_al l _header s deletes every

occurrence of the specified header.
� act i on_change_header changes the value of

an existing header, or inserts a new header if no
such header exists.

71

Example of Header Modification

sub f i l t er _end {
my($ent i t y) = @_;

Remove any X- MD- Host header s
act i on_del et e_al l _header s (' X- MD- Host ') ;

And add our own
act i on_add_header (' X- MD- Host ' , ' mdbox . mydomai n. net ') ;

}

72

Recipient Modification Routines
� You can add or delete envelope recipients:

� add_r eci pi ent adds a recipient.
� del et e_r eci pi ent deletes a recipient.

� Note: These routines affect only envelope
recipients. That is, they affect mail delivery,
but do not modify headers. They don't adjust
the Cc: or To: headers, for example, nor do
they adjust @Reci pi ent s .

73

Example of Recipient
Modification

sub f i l t er _end {
my($ent i t y) = @_;

Put spammi sh messages i n spamt r ap
i f (l ooks_l i ke_spam()) {

my $r eci p;
f or each $r eci p (@Reci pi ent s) {

del et e_r eci pi ent ($r eci p) ;
}
add_r eci pi ent (' spamt r ap@mydomai n. net ') ;

}

We ar chi ve ever yt hi ng!
add_r eci pi ent (' ar chi ve- bot @mydomai n. net ') ;

}

The l ooks_l i ke_spam() function is an example; it's not part of
MIMEDefang. We'll get to spam detection in a later section.

74

Notification Routines

� act i on_not i f y_admi ni s t r at or – send
the MIMEDefang administrator a notification
message.

� act i on_not i f y_sender – send the
original sender a notification message.

� Use act i on_not i f y_sender with great
care. In particular, do not notify senders of
viruses, because modern viruses fake the
sender address and you just end up irritating
innocent third parties.

75

Example of Administrator
Notification

sub f i l t er _end {
my($ent i t y) = @_;

i f (message_cont ai ns_vi r us_cl amd()) {
my $qdi r = get _quar ant i ne_di r () ;
act i on_quar ant i ne_ent i r e_message() ;
act i on_bounce(" Found t he $Vi r usName vi r us") ;
act i on_not i f y_admi ni st r at or (

" Found t he $Vi r usName i n message i n $qdi r ") ;
}

Presumably, $FoundHTML is set elsewhere in the filter.

76

Example of Sender Notification
sub f i l t er _end {

my($ent i t y) = @_;

i f ($FoundHTML &&
gr ep { l c ($_) eq ' <md@l i st s . r oar i ngpengui n. com>' } @Reci pi ent s) {
act i on_not i f y_sender (' HTML not per mi t t ed on t he l i s t ') ;
ac t i on_di scar d() ;

}
}

77

Message Modification in
f i l t er _end

� In f i l t er _end, you can make structural
modifications to the entire MIME message.

� In f i l t er , you can only drop or replace
individual MIME parts one part at a time.

� In f i l t er _end, you can “look” at the entire
MIME message all at once and modify its
structure.

� f i l t er _end is passed a MIME::Entity
representing the rebuilt, possibly modified,
message.

78

Message Modification in
f i l t er _end (2)

� act i on_add_par t – add a MIME part to the
message.

� append_ht ml _boi l er pl at e – append
boilerplate to HTML MIME parts.

� append_t ext _boi l er pl at e – append
boilerplate to plain-text MIME parts.

� r emove_r edundant _ht ml _par t s – remove
text/html parts that have corresponding
text/plain parts

� r epl ace_ent i r e_message – replace entire
message with your own MIME::Entity.

79

Example of Modification in
f i l t er _end

sub f i l t er _end {
my($ent i t y) = @_;

I f we have bot h pl ai n- t ext and HTML, nuke HTML
r emove_r edundant _ht ml _par t s($ent i t y) ;

Si gh. . . l awyer s i nsi st on t hi s
i f (message_i s_out goi ng()) {

append_t ext _boi l er pl at e($ent i t y,
' Si l l y l egal boi l er pl at e' , 0) ;

append_ht ml _boi l er pl at e($ent i t y,
' Si l l y</ em> l egal boi l er pl at e' , 0) ;

}
}

The message_i s_out goi ng() function is not built into MIMEDefang.
Presumably, it's a function you would write that would look at $Sender
and @Rec i pi ent s and determine if mail is outgoing (or use the relay IP
address to make its decision.)

The append_ht ml _boi l er pl at e function tries to be reasonably smart.
It parses the HTML and puts your boilerplate just before the </body> tag if it
can.

80

SpamAssassinTM Integration
� SpamAssassinTM is generally acknowledged as one of

the best spam-detection systems.
� SpamAssassin uses many techniques to detect spam:

� Header tests: E.g. invalid Message-IDs, fake MUA
lines, fake Received: headers

� Body tests: E.g. obfuscating HTML comments, spam
phrases, body disguised with Base64 encoding.

� Network tests: E.g. RBL lookups, SURBL lookups,
Razor lookup and reporting, DCC lookup and
reporting.

� Bayesian analysis: Statistical analysis from a learned
corpus of mail.

“SpamAssassin” is a trademark of Network Associates Inc.

81

SpamAssassin Integration
� All of the SpamAssassin tests are assigned weights,

and if the weighted sum of rules that trigger exceeds
a threshold, the message is likely spam.

� Weights are determined with a genetic algorithm run
against a huge corpus of mail. The weights are
adjusted to minimize error.

� SpamAssassin is written in Perl, and can be used as
both a Perl module and as command-line tools.
MIMEDefang integrates directly at the Perl module
level.

82

SpamAssassin Integration
� MIMEDefang uses SpamAssassin only to detect

spam. The SpamAssassin facilities for modifying
messages are not used by MIMEDefang. If you want
to modify a message (for example, tag the subject),
you need to do it using MIMEDefang's functions (like
act i on_change_header).

� Using Bayesian filtering with MIMEDefang is tricky,
because MIMEDefang runs only as the “defang” user.
 However, it is possible to use a system-wide Bayes
database with MIMEDefang and SpamAssassin.

83

SpamAssassin Integration
� Simplest function: spam_assassi n_i s_spam

returns true if spam score is above configured
threshold; false otherwise.

� Next up in complexity and detail:
spam_assassi n_check returns four value:
hits (the actual score), required (the spam
threshold), tests (a list of SpamAssassin tests
that fired) and report (the SpamAssassin report
as a string.)

� To get into nitty-gritty of SpamAssassin, call
spam_assassi n_i ni t , which returns a
Mail::SpamAssassin object for you to
manipulate.

Other SpamAssassin-related functions are spam_assass i n_mai l , which
returns a Mail::NoAudit object for feeding the the SpamAssassin perl
module, and spam_assass i n_s t at us , which returns a
Mail::SpamAssassin::PerMsgStatus object for the current message.

These functions hook into the low-level SpamAssassin library, giving you
more access to and control over SpamAssassin.

84

Example of SpamAssassin
Integration

sub f i l t er _end {
my($ent i t y) = @_;
my($hi t s, $r eq, $names, $r epor t) = spam_assassi n_check() ;
my $st ar s = ($hi t s < 15) ? (" * " x i nt ($hi t s)) : (" * " x 15) ;

Bounce anyt hi ng scor i ng t wi ce t he spam t hr eshol d
i f ($hi t s >= 2 * $r eq) {

act i on_bounce(" No spam want ed her e. ") ;
r et ur n;

}

Add spam- scor e header
act i on_change_header (" X- Spam- Scor e" , " $hi t s ($st ar s) $names") ;

Tag subj ect i f over t hr eshol d
i f ($hi t s >= $r eq) {

act i on_change_header (" Subj ect " , " [Spam: $hi t s] $Subj ect ") ;
}

}

85

Checking Addresses for
Existence

� Many e-mail systems use a filtering server that relays
to actual mail server.

� Filtering server may not know all valid internal e-mail
addresses. It must relay for anything@domain.net

� Problem: Mail for invalid recipients is accepted by
filtering server, but rejected by internal machine.
Filtering server is now responsible for generating and
mailing a DSN.

� Most of these DSNs sit in the queue or bounce.

86

Checking Existence - 2
� MIMEDefang has a function called

md_check_agai nst _smt p_ser ver that runs a
“mini-SMTP” dialog for each RCPT command.

� If the internal server would reject a recipient, then so
does MIMEDefang. This lets you reject unknown
recipients at RCPT TO: time on the perimeter.

� Does not work with MS Exchange before 2003, and
even 2003 requires hoops:
http://hellomate.typepad.com/exchange/2003/09/exch
ange_2003_r.html

87

Checking Existence - 3
� Alternatively, you can validate addresses on

the perimeter by:
� Writing Perl code to connect to an LDAP or SQL

database.
� Playing Sendmail virtusertable tricks.

88

Miscellaneous Functions
� message_r ej ect ed() returns true if

message has been rejected (eg, by
act i on_di scar d, etc.) Use it to save
computation:

sub f i l t er {
my($ent i t y , $f name, $ext , $t ype) = @_;

No poi nt i n doi ng wor k i f message al r eady r ej ect ed
r et ur n i f message_r ej ect ed() ;

Do heavy comput at i ons now. . .
. . . et c . . .

}

89

Miscellaneous Functions
� r ead_commands_f i l e() makes some

global variables normally available only after
f i l t er _begi n available to
f i l t er _r el ay , f i l t er _sender and
f i l t er _r ec i pi ent .

� Obviously, only those variables whose
values are known will be available – you
can't use $Subj ect until f i l t er _begi n,
for example.

� Consult mimedefang-filter man page for
details.

90

Advanced Techniques
� You can use all of Perl's power to write

sophisticated filters.
� I will show three examples of more

sophisticated filters:
� A filter that preserves relay information

across secondary MX hosts.
� A partial implementation of “Greylisting”.
� A simple-minded per-class-C throttle.

91

Preserving Relay Information
� Most organizations use (or should use) secondary

MX hosts in case the primary MX host is down.
� If the secondary MX host relays to the MIMEDefang

machine, then the relay address is not directly useful.
� However, we can detect mail from a secondary MX

host and extract the “real” relay IP address from the
Received: headers.

� We just defer host processing until f i l t er _begi n.

92

Preserving Relay Information
 1 @Rel ayer s = (" 127. 0. 0. 1" , " 192. 168. 2. 10" , " 192. 168. 3. 15") ;

 2 sub f r om_secondar y_mx ($) {
 3 my($i p) = @_;
 4 i f (gr ep { $i p eq $_ } @Rel ayer s) {
 5 r et ur n 1;
 6 }
 7 r et ur n 0;
 8 }

Line 1: Declare a list of our secondary MX hosts. These are IP addresses
as seen by the MIMEDefang machine.

Lines 2-3: Subroutine entry point. We'll return 1 if argument is a secondary
MX host; 0 if it is not.

Lines 4-6: Return 1 if argument is found in the list of secondary MX hosts.

Line 7: Return 0 if argument was not found in list of secondary MX hosts.

93

Preserving Relay Information
 1 sub get _r eal _r el ay_f r om_header s () {
 2 open(HDRS, " <. / HEADERS") or r et ur n undef ;
 3 whi l e(<HDRS>) {
 4 chomp;
 5 next unl ess / ^Recei ved: \ s* f r om/ i ;
 6 i f (/ \ (\ [(\ d+\ . \ d+\ . \ d+\ . \ d+) \] \) / or
 7 / \ s+\ [(\ d+\ . \ d+\ . \ d+\ . \ d+) \] \) / or
 8 / \ [(\ d+\ . \ d+\ . \ d+\ . \ d+) \] / or
 9 / \ ((\ d+\ . \ d+\ . \ d+\ . \ d+) \) / or
10 / \ @(\ d+\ . \ d+\ . \ d+\ . \ d+) / or
11 / \ s+(\ d+\ . \ d+\ . \ d+\ . \ d+) \ s+/ or
12 / (\ d+\ . \ d+\ . \ d+\ . \ d+) /) {
13 my $addr = $1;
14 i f (! f r om_secondar y_mx($addr)) {
15 cl ose(HDRS) ; r et ur n $addr ;
16 }
17 } el se {
18 c l ose(HDRS) ; r et ur n undef ;
19 }
20 }
21 cl ose(HDRS) ;
22 r et ur n undef ;
23 }

Line 1: Subroutine entry point.
Line 2: Open the ./HEADERS file, which contains one header per line.
Line 3: Iterate over all the headers.
Line 5: Ignore any header that doesn't begin with “Received: from”
Lines 6-12: Pick out a “likely-looking” relay IP address. If an IP address is of
the form a.b.c.d, we look for these patterns in order of preference. A
<space> indicates a whitespace character; other characters are literal.
� ([a.b.c.d])
� <space>[a.b.c.d])
� [a.b.c.d]
� @a.b.c.d
� <space>a.b.c.d<space>
� a.b.c.d

Lines 14-16: If we found an IP address that is not one of our secondary MX
hosts, return it. This allows for a chain of secondary MX hosts.
Lines 17-19: If we failed to find any IP address at all in the Received: header,
then it is too strange for us to parse and we give up. It is important to give
up; if we do not, we could end up parsing the next Received: header down
and returning incorrect information.
Lines 20-23: Give up if no Received: header found or no non-secondary-
MX IP address found.

94

Preserving Relay Information
 1 sub f i l t er _r el ay ($$$) {
 2 my($host i p, $host name, $hel o) = @_;
 3 i f (f r om_secondar y_mx($host i p)) {
 4 # Fr om a secondar y MX host - def er pr ocessi ng
 5 r et ur n(' CONTI NUE' , ' OK') ;
 6 }

 7 # Do r eal r el ay- checki ng her e. . .
 8 }

 9 sub f i l t er _begi n () {
10 i f (f r om_secondar y_mx($Rel ayAddr)) {
11 my $r eal _r el ay = get _r eal _r el ay_f r om_header s() ;
12 i f (def i ned($r eal _r el ay)) {
13 $Rel ayAddr = $r eal _r el ay;
14 # Do r eal r el ay- checki ng her e. . .
15 }
16 }
17 }

In this example, f i l t er _r el ay does not do any host-IP-based filtering if
mail is coming from a secondary MX host. Instead, filter_begin checks if
mail is coming from a secondary MX host. If it is, then host-IP-based
filtering is done in f i l t er _begi n. This defers the IP-based filtering until
after the DATA phase.

95

Greylisting
� Some spammers use special ratware to send

out spam. The goal of ratware is to send
massive amounts of e-mail out quickly, not to
ensure reliable delivery of any particular
message.

� Some ratware ignores SMTP error codes. If
a message is failed, the ratware never
retries.

� Legitimate mail servers always retry a
message that has experienced a temporary
failure (4xx SMTP reply code.)

96

Greylisting (2)
� By tempfailing mail from an unknown sender

the very first time, we can detect ratware
(and prevent delivery.) A legitimate mail
server will almost always retry, leading to
practically no false-positives. We call this
“hit-and-run detection.”

� Hit-and-run detection was introduced in our
CanIt product in January 2003, and
expanded upon by Evan Harris at
http://projects.puremagic.com/greylisting

97

Greylisting (3)
� Full greylisting takes into account the

Sender/Recipient/Relay-Address tuple, and imposes
minimum and maximum bounds on retransmission time.

� We show a simplified version that only takes into
account sender and recipient. The code:

sub f i l t er _r eci pi ent ($$$$$$$$$) {
 my($r eci p, $sender , $r est _of _t he_j unk) = @_;
 i f (shoul d_gr eyl i st ($sender , $r eci p)) {
 r et ur n(" TEMPFAI L" ,
 " Tempf ai l ed as ant i - spam measur e. Pl ease t r y agai n. ") ;
 }
 r et ur n (" CONTI NUE" , " ") ;
}

$DBFi l e = " / var / spool / MI MEDef ang/ gr eyl i st . db" ;
1;

98

should_greylist
 1 sub shoul d_gr eyl i st ($$) {
 2 my($sender , $r eci p) = @_;
 3 my %hash;
 4 $sender = canoni cal i ze_emai l ($sender) ;
 5 $r eci p = canoni cal i ze_emai l ($r eci p) ;
 6 my $key = " <$sender ><$r eci p>" ;
 7 l ock_db() ;
 8 t i e %hash, ' DB_Fi l e' , $DBFi l ename;
 9 my $r et = ++$hash{ $key} ;
10 unt i e %hash;
11 unl ock_db() ;
12 r et ur n ($r et == 1) ;
13 }

Lines 1-2: Subroutine entry point. Arguments are sender and recipient.

Line 3: Declare a local variable that we'll tie to the Berkeley DB

Lines 4-5: Strip angle brackets off e-mail addresses and make lower-case.

Line 6: Construct a key for lookup in the Berkeley DB.

Line 7: Lock the DB (other slaves might try to access it concurrently.)

Line 8: Tie our hash to the Berkeley DB. Now, accessing %hash accesses
the disk database.

Line 9: Increment the number of times we've seen this sender/recipient
combination. Thanks to Perl, if the key isn't in the database, it
automagically gets inserted with a value of 1.

Linues 10-11: Disconnect from the database and unlock it.

Line 12: Return true if this is the first time we've seen this sender/recipient
pair.

99

canonicalize_email

 1 sub canoni cal i ze_emai l ($) {
 2 my($emai l) = @_;
 3 # Remove angl e- br acket s; conver t t o l ower - case
 4 $emai l =~ s/ ^</ / ;
 5 $emai l =~ s/ >$/ / ;
 6 $emai l = l c($emai l) ;
 7 r et ur n $emai l ;
 8 }

Lines 1-2: Subroutine entry point. Argument is an e-mail address.

Line 4: Remove leading angle bracket, if any.

Line 5: Remove trailing angle bracket, if any.

Line 6: Convert to lower-case.

Line 7: Return canonical value.

100

lock_db and unlock_db

 1 sub l ock_db () {
 2 open(LOCKFI LE, " >>$DBFi l ename. l ock") or r et ur n 0;
 3 f l ock(LOCKFI LE, LOCK_EX) ;
 4 r et ur n 1;
 5 }

 6 sub unl ock_db () {
 7 f l ock(LOCKFI LE, LOCK_UN) ;
 8 c l ose(LOCKFI LE) ;
 9 unl i nk(" $DBFi l ename. l ock") ;
10 r et ur n 1;
11 }

Line 2: Open a lock file.

Line 3: Acquire an exclusive lock on the file.

Line 7: Relinquish lock on lock file.

Line 8: Close LOCKFILE descriptor.

Line 9: Remove lock file.

NOTE: No error checking!

101

Obvious enhancements

� Implement full greylisting with
minimum/maximum allowed retry times.

� Add Relay-IP to the key.
� Make exceptions (no point in greylisting mail

from 127.0.0.1 or friendly hosts.)
� Add error-checking.
� Use a SQL database rather than Berkeley

DB. This makes it easier to run multiple MX
hosts sharing the same greylisting database.

102

Per-Class-C Throttle

� This simple filter limits a given class C
network to sending 50 mails in 10 minutes.
We use a sliding window updated once a
minute to keep track of attempts per class C
network.

� This filter will illustrate how to extend the
MIMEDefang protocol, and will serve as an
introduction to the md- mx- ct r l program.
md- mx- ct r l allows you to inject commands
into a running multiplexor.

103

Per-Class-C Throttle -
filter_sender

 1 use DB_Fi l e;
 2 use Fcnt l ' : f l ock ' ;

 3 $DBFi l ename = " / var / spool / MI MEDef ang/ t hr ot t l e. db" ;
 4 sub f i l t er _sender ($$$$) {
 5 my($sender , $host i p, $j unk) = @_;

 6 # Chop of f l ast byt e - - onl y car e about cl ass C net wor k
 7 $host i p =~ s/ \ . \ d+$/ / ;
 8 i f (count _at t empt s($host i p, 1) > 50) {
 9 r et ur n(' TEMPFAI L' ,
10 " Rat e- l i mi t i ng i n ef f ect f or net wor k $host i p") ;
11 }
12 r et ur n(' CONTI NUE' , " OK") ;
13 }

Lines 1-2: Load Berkeley DB and file locking Perl modules.

Line 3: Set name of Berkeley DB file.

Line 7: Keep only the first three bytes of IP address of relay host.

Lines 8-11: If we've had more that 50 attempts from class C network in the
last 10 minutes, tempfail the MAIL FROM: command.

Line 12: Otherwise, allow SMTP transaction to continue.

104

Per-Class-C Throttle -
count_attempts

 1 sub count _at t empt s ($$) {
 2 my($i p, $do_i ncr) = @_;
 3 my $at t empt s = 0;
 4 my %hash;
 5 my $t i me;
 6 my $i ;
 7 $t i me = t i me_i n_mi nut es() ;

 8 l ock_db() ;
 9 t i e %hash, ' DB_Fi l e' , $DBFi l ename;
10 $hash{ " $i p: " . $t i me} ++ i f $do_i ncr ;
11 f or ($i =0; $i <10; $i ++) {
12 my $x = $hash{ " $i p: " . ($t i me- $i) } ;
13 $at t empt s += $x i f def i ned($x) ;
14 }
15 pr i nt STDERR " DEBUG: at t empt s($i p) = $at t empt s\ n" ;
16 unl ock_db() ;
17 unt i e %hash;
18 r et ur n $at t empt s;
19 }

Lines 1-2: Subroutine entry. We are given two arguments: $ip is the class-C
network, and $do_incr is a flag indicating whether or not to increment the
number of attempts for this network.

Line 7: Get an integer representing current time in minutes since midnight,
January 1st, 1970.

Lines 8-10: Usual Berkeley DB connection sequence.

Lines 11-14: Sum the attempts in the last 10 minutes.

Line 15: Log some debugging output.

Lines 16-19: Disconnect from Berkeley DB and return answer.

The Berkeley DB holds buckets indexed by {Class-C-Addr, Time-In-
Minutes}. We increment the current bucket, and sum the most recent 10
buckets, for each class C address.

105

Per-Class-C Throttle -
time_in_minutes

1 sub t i me_i n_mi nut es () {
2 r et ur n i nt (t i me() / 60) ;
3 }

Time_in_minutes is dead simple: Get time in seconds and divide by 60.

106

Per-Class-C Throttle -
clean_database

 1 sub cl ean_dat abase () {
 2 my %hash;
 3 my $t hi ng;
 4 my $n = 0;
 5 my $now = t i me_i n_mi nut es() ;
 6 l ock_db() ;
 7 t i e %hash, ' DB_Fi l e' , $DBFi l ename;
 8 f or each $t hi ng (keys %hash) {
 9 my($i p, $t i me) = spl i t (/ : / , $t hi ng) ;
10 i f ($t i me < $now - 9) {
11 del et e($hash{ $t hi ng}) ;
12 pr i nt STDERR " Cl eani ng $t hi ng\ n" ;
13 $n++;
14 }
15 }
16 unl ock_db() ;
17 unt i e %hash;
18 r et ur n $n;
19 }

If we don't clean the database periodically, it will grow without bound.

Lines 1-7: Connect the Berkeley DB

Lines 8-15: Iterate over every key in the database. If it is for a bucket 10
minutes old or older, delete the key.

Lines 16-19: Disconnect from Berkeley DB and return a count of the keys
cleaned up from the database.

107

Per-Class-C Throttle -
filter_unknown_cmd

 1 sub f i l t er _unknown_cmd ($) {
 2 my($cmd) = @_;
 3 i f ($cmd eq " c l eandb") {
 4 my $ncl eaned = cl ean_dat abase() ;
 5 r et ur n (" ok" , $ncl eaned) ;
 6 } el s i f ($cmd =~ / count \ s+(\ S+) /) {
 7 my $at t empt s = count _at t empt s($1, 0) ;
 8 r et ur n (" ok" , $at t empt s) ;
 9 }
10 r et ur n(" er r or : " , " Unknown command") ;
11 }

If you define a function called filter_unknown_cmd, then if the slave
receives a request it doesn't understand, it passes the request on to
filter_unknown_cmd. Here, we define two requests:

Lines 3-5: If the “cleandb” request comes in, we expire old data from the
database.

Lines 6-9: If a “count class_c_addr” request comes in, we return the count
for the specified Class C address.

108

Sendmail's SOCKETMAP
� Many parts of Sendmail's processing involve map

lookups. These are database lookups that look up a
value given a key. Examples:

� Access database lookups.
� Alias lookups.
� Virtusertable lookups.

� Map lookups are commonly implemented as Berkeley
DB lookups or LDAP lookups.

� Sendmail 8.13 has a new map type called
SOCKETMAP that uses a simple protocol over a TCP
or UNIX-domain socket to talk to a mapping daemon.

Communication between Sendmail and the SOCKETMAP server does not
use the Milter protocol. Sendmail documents (yet another) wire protocol
for this lookup. It just turns out to be quite convenient to re-use the
multiplexor to handle SOCKETMAP lookups.

109

Sendmail's SOCKETMAP - 2
� MIMEDefang lets you implement a

socketmap lookup by defining the
f i l t er _map function and invoking the
multiplexor with the - N option (to specify the
socket.)

� This lets you implement a map in Perl! You
can do cool stuff like SQL database lookups,
computational lookups, etc...

� f i l t er _map runs outside the context of an
SMTP session, so most mail-related global
variables are unavailable.

110

SOCKETMAP Example
� Sendmail config file example:

V10/ Ber kel ey
Kmysock socket uni x: / var / spool / MI MEDef ang/ map. sock
Ksock2 socket uni x: / var / spool / MI MEDef ang/ map. sock

� MIMEDefang filter example (silly one...)
sub f i l t er _map ($$) {

my($mapname, $key) = @_;
i f ($mapname eq " mysock") {

my $ans = r ever se($key) ;
r et ur n (" OK" , $ans) ;

}
r et ur n(" PERM" , " Unknown map $mapname") ;

}

111

SOCKETMAP Example
� And here is a Sendmail test session:

$ sendmai l - C . / socket map. cf - bt
No l ocal mai l er def i ned
ADDRESS TEST MODE (r ul eset 3 NOT aut omat i cal l y i nvoked)
Ent er <r ul eset > <addr ess>
> / map mysock Test i ng. . .
map_l ookup: mysock (Tes t i ng. . .) r et ur ns . . . gni t seT (0)
> / map sock2 f oo
map_l ookup: sock2 (f oo) no mat ch (69)

112

md- mx- ct r l
� The program md- mx- ct r l lets you

“manually” send a request to the multiplexor.
� Some special requests are handled directly

by the multiplexor rather than being passed
to a Perl slave.

� All other requests are passed to a free Perl
slave.

� md- mx- ct r l lets you “pretend” to be
mi medef ang. The multiplexor treats a
request from md- mx- ct r l just like any other
request.

113

Augmented Architecture

mi medef ang

mi medef ang- mul t i pl exor

mi medef ang. plmi medef ang. pl mi medef ang. pl

UNIX-domain socket

Pipes

� md- mx- ct r l lets you inject requests and read responses
from the multiplexor.

md- mx- ct r l

114

md- mx- ct r l special requests
� f r ee: Print the number of free slaves.
� st at us : Print the status of all slaves.
� r awst at us : Print the status of all slaves in

machine-readable form (used by watch-
mimedefang.)

� r er ead: Force slaves to reread filter rules at
earliest convenient opportunity. Idle slaves
are killed; busy slaves are killed as soon as
they become idle.

� msgs : Print number of messages processed
since multiplexor started.

115

md- mx- ct r l special requests - 2

� l oad: Print many useful statistics.
� s l aves : List slaves and their PIDs
� r awl oad: Same as l oad but in a machine-

parseable format.
� bar s t at us : Print busy slaves in a

“bargraph” format.

116

md- mx- ct r l special request
examples

md- mx- ct r l f r ee
3

md- mx- ct r l st at us
Max slaves: 4
Slave 0: idle
Slave 1: busy
Slave 2: idle
Slave 3: stopped

md- mx- ct r l r awst at us
IBIS 1 3 30 0

The format of the r aws t at us output is documented in the md- mx - c t r l
(8) man page.

117

md- mx- ct r l special request
examples - 2

md- mx- c t r l l oad
Load: Msgs: Msgs/Sec: Avg ms/scan: Avg Busy Slaves:
10 Sec 52 5.20 703.6 4.40
 1 Min 428 7.13 430.9 3.30
 5 Min 2224 7.41 396.7 3.25
10 Min 4483 7.47 407.0 3.29

f or i i n ` seq 1 5` ; do md- mx- ct r l bar st at us; s l eep 1; done
 3/10 BBB....... 0/30 7141
 2/10 BB........ 0/30 7149
 5/10 BBBBB..... 0/30 7156
 4/10 BBBB...... 0/30 7166
 3/10 BBB....... 0/30 7175

118

md- mx- ct r l and wat ch-
mi medef ang

� A Tcl/Tk program called wat ch-
mi medef ang uses md- mx- ct r l to monitor
MIMEDefang graphically.

� Can monitor remote machines over a low-
bandwidth SSH connection. Can even run
this on Windows with a Windows SSH
program like putty.

119

md- mx- ct r l and wat ch-
mi medef ang

120

md- mx- ct r l extended
requests

� Our sample Class C throttle filter added the
c l eandb and count requests:

md- mx- ct r l c l eandb
ok 17

md- mx- ct r l count 192. 168. 5
ok 22

� Caveat: You have no control over which Perl
slave runs the request. There is no way to
broadcast a request to all Perl slaves.

121

Different Strokes for Different
Folks

� One of the top-5 FAQs: “How do I get
MIMEDefang to use different rules for
different recipients?”

� In general, very difficult. SMTP has no way
to indicate selective success/failure after the
DATA phase. There's no way (after DATA)
to say “Message delivered to X, Y and Z.
Message bounced for U, V and W. Message
tempfailed for P and Q.”

122

Streaming
� MIMEDefang implements a hack to allow per-

recipient (or per-domain) customizations.
First, the code and then the explanation:
sub f i l t er _begi n () {
 i f (st r eam_by_r eci pi ent ()) {
 r et ur n;
 }
 # At t hi s poi nt , @Reci pi ent s
 # cont ai ns a si ngl e ent r y
}

123

How Streaming Works
� If @Reci pi ent s contains one entry, then

st r eam_by_r eci pi ent () does nothing, and
returns 0.

� If @Reci pi ent s contains more than one entry, then
st r eam_by_r eci pi ent () re-mails copies of the
original e-mail individually to each recipient. It then
calls act i on_di scar d() and returns 1. It also
prevents any further filtering of original e-mail – there
are no further calls to f i l t er or f i l t er _end for the
original e-mail.

� The key to making this work is that Sendmail 8.12 in
its default configuration re-submits the re-sent
messages via SMTP.

124

How Streaming Works -
Diagram

>1 Reci pi ent ?

Ret ur n 0

Resend message
once per r eci p.

Di scar d or i gi nal
message and
cancel f i l t er i ng

Ret ur n 1

Y

N

St ar t

125

Streaming Example
� Do not filter mail for abuse@mydomai n. net

sub f i l t er _begi n () {
 r et ur n i f (st r eam_by_r eci pi ent ()) ;
}

sub f i l t er ($$$$) {
my($ent i t y, $f name, $ext , $t ype) = @_;
Do not f i l t er f or abuse
i f (canoni cal i ze_emai l ($Reci pi ent s[0])

 eq ' abuse@mydomai n. net ') {
r et ur n;

}

Nor mal f i l t er i ng r ul es her e. . .
}

� Even if mail comes in for two recipients, abuse's mail
will not be filtered, but the other recipient's will be
filtered.

126

Streaming Downsides
� Mail must be re-sent, so it's harder to determine

original relay IP (resent mail appears to come from
127.0.0.1). MIMEDefang has another hack to work
around this; consult the man pages. I present an
alternate approach to get the real relay IP later on in
this talk.

� If a re-sent mail is rejected, your machine is
responsible for generating a bounce message. Can no
longer get away with just an SMTP failure code.

� Mail is re-sent in deferred mode (Sendmail's - odd
switch – queue the mail, send during the next queue
run.) This delays streamed mail.

Exercise for the reader: Consider what happens if we re-send mail in
interactive or background mode rather than deferred mode. Explain why
the decision was made to resend mail in deferred mode.

127

Per-User SpamAssassin
Settings

� Streaming allows for per-user SpamAssassin
settings.

� You can obtain the SpamAssassin object
used by MIMEDefang and adjust its settings
based on recipient address.

� This is tricky and is an exercise left for the
audience. See the mimedefang-filter(5) and
Mail::SpamAssassin(3) man pages.

128

Streaming by Domain
� Another common scenario is different settings for

different domains, but the same setting within a
domain. st r eam_by_domai n is similar to
st r eam_by_r eci pi ent , but groups recipients by
domain.

� Example: If mail comes in for a@a. net , b@a. net ,
c@b. net and d@c. net , then three copies are sent
out: One to a and b, one to c , and one to d.

� Global variable $Domai n is set if all recipients are in
the same domain.

129

Streaming by Domain Example
sub f i l t er _begi n () {
 i f (st r eam_by_domai n()) {
 r et ur n;
 }
 i f ($Domai n eq ' a. net ') {
 # Rul es f or a. net
 } el si f ($Domai n eq ' b. net ') {
 # Rul es f or b. net
 } el se {
 # Rul es f or ever yone el se
 }
}

130

The Notification Facility
� Notification here means letting a program know when

something “interesting” has happened. It doesn't refer
to notifying a person by e-mail.

� The multiplexor defines “interesting” events as:
� A slave has been killed because of a busy timeout
� The number of free slaves has changed
� Someone has requested a filter reread
� A slave has died unexpectedly
� The number of free slaves has dropped to zero
� The number of free slaves was zero, but is now

non-zero.

131

The Notification Facility - 2
� The notification facility sends simple one-line

ASCII messages over the socket.
� Programs connecting to the notifier can

specify which messages they are interested
in. The notifier will only send those
messages.

� The messages are:
� B – There was a busy timeout
� F n – There are n free slaves
� R – Someone has requested a filter re-read
� U – A slave has died unexpectedly
� Y – the number of free slaves went from 0 to 1
� Z – the number of free slaves went from 1 to 0

132

The Notification Facility - 3
� Examples:

� If a slave dies unexpectedly or a busy timeout
occurs, your program could page you.

� You could log statistics to have a complete history
of the number of busy slaves over time.

� You can reject SMTP connections when there are
no free slaves, and accept them again when there
are free slaves.

� Documented in mimedefang-notify(7) man
page.

133

The Notification Facility –
Linux-specific example - 1

#! / usr / bi n/ per l - w
#
On Li nux, pr epar e t o use t hi s scr i pt l i ke t hi s:
/ sbi n/ i pt abl es - N smt p_conn
/ sbi n/ i pt abl es - A I NPUT - - pr ot o t cp - - dpor t 25 - - syn - j smt p_conn
Then r un t he scr i pt as r oot .

use I O: : Socket : : I NET;

sub no_f r ee_sl aves {
 pr i nt STDERR " No f r ee sl aves! \ n" ;
 # Rej ect new connect i ons on por t 25 (r ej ect SYN packet s)
 syst em(" / sbi n/ i pt abl es - A smt p_conn - j REJECT") ;
}

sub some_f r ee_sl aves {
 pr i nt STDERR " Some f r ee sl aves. \ n" ;
 # Accept new connect i ons agai n on por t 25
 syst em(" / sbi n/ i pt abl es - F smt p_conn") ;
}

134

The Notification Facility –
Linux-specific example - 2

sub mai n {
 my $sock;

 $sock = I O: : Socket : : I NET- >new(Peer Addr => ' 127. 0. 0. 1' ,
 Peer Por t => ' 4567' ,
 Pr ot o => ' t cp') ;
 # We ar e onl y i nt er est ed i n Y and Z messages
 pr i nt $sock " ?YZ\ n" ;
 $sock- >f l ush() ;
 whi l e(<$sock>) {
 i f (/ ^ Z/) {
 no_f r ee_s l aves() ;
 }
 i f (/ ^ Y/) {
 some_f r ee_s l aves() ;
 }
 }
 # EOF f r om mul t i pl exor ?? Bet t er undo f i r ewal l i ng
 sys t em(" / sbi n/ i pt abl es - F smt p_conn") ;
}

mai n() ;

135

The Tick Facility
� Sometimes, you would like to run a task

periodically. For example, you might want a
database maintenance or cleanup job to be run
every so often.

� The multiplexor can issue a tick request every
so often. This runs a function you define called
f i l t er _t i ck .

� The multiplexor ensures that at most one tick
request is outstanding at any given time – you'll
never have two simultaneously-executing
f i l t er _t i cks.

136

The Tick Facility - 2
� You cannot predict which slave will run

a tick request.
� If all slaves are busy when it is time to

run a tick, the request is simply skipped.
The multiplexor tries again at the next
regularly-scheduled tick time.

� Tick requests run outside the context of
an SMTP connection, so most mail-
related global variables are not
available.

137

Common Spammer Tactics 1
� Fake the HELO string to be from your domain,

or even your IP address. Defense:
Assume my I P addr ess i s 192. 168. 1. 2
sub f i l t er _sender {
 my ($f r om, $hos t i p, $hos t name, $hel o) eq @_;
 i f ($hel o =~ / mydomai n\ . net $/ or
 $hel o eq ' 192. 168. 1. 2') {
 r et ur n(' REJECT' , ' Faked HELO') ;
 }
 r et ur n(' CONTI NUE' , ' OK') ;
}

� Do not use on server used to send internal mail
out! In this case, HELO can legitimately be
from your domain. (Or check $host i p.)

138

Common Spammer Tactics 2
� Fake sender to be from a big-name ISP. We

can do selective and judicious sender-relay
mismatch tests:
sub f i l t er _sender {
 my ($f r om, $host i p, $host name, $hel o) eq @_;
 $f r om = canoni cal i ze_emai l ($f r om) ;
 i f ($f r om =~ / \ @hot mai l \ . com$/ and
 ! ($host name =~ / hot mai l \ . com$/)) {
 r et ur n(' REJECT' ,
 " Mai l f r om hot mai l . com not accept ed f r om $host name") ;
 }
 r et ur n(' CONTI NUE' , ' OK') ;
}

� Used sparingly, this is highly effective. It may
reject valid e-mail, but you should educate
users to relay via Hotmail for their Hotmail
accounts.

The mismatch test is effective for large providers like Hotmail and Yahoo
that have good reverse-DNS setups. In general, however, there is no good
reason to assume that the sending relay's hostname should end in the
same domain as the envelope from address, so don't overdo this rule.

Sender Policy Framework (SPF - http://spf.pobox.com) is designed to allow
domains to publish their list of outgoing relays; it is a more accurate test
than a “mismatch” test. Unfortunately, SPF is still not widely deployed, and
it has its share of critics.

139

Common Spammer Tactics 3
� Fake sender address from your domain.

How cheeky! Unfortunately, you end up
dealing with bounces.

� We suggest publishing receive-only
addresses on your Web site. For
example, sal es@cani t . ca and
i nf o@cani t . ca are used only to
receive mail, never to send it. (We send
from personal addresses.)

� Receive-only addresses should never
receive bounces.

140

Rejecting Spurious Bounces
sub f i l t er _r eci pi ent {
 my($r eci pi ent , $sender , $j unk) = @_;
 $r eci pi ent = canoni cal i ze_emai l ($r eci pi ent) ;
 i f ($sender eq ' <>') {
 i f ($r eci pi ent eq ' i nf o@cani t . ca' or
 $r eci pi ent eq ' sal es@cani t . ca') {
 r et ur n(' REJECT' ,
 " $r eci pi ent i s a r ecei ve- onl y addr ess") ;
 }
 r et ur n(' CONTI NUE' , ' OK') ;
}

141

Sendmail Macros
� Several Sendmail macros are available

during the scan request in the
%Sendmai l Macr os hash. Example:
Do not f i l t er mai l f r om aut hent i cat ed user s
sub f i l t er _end {
 my($ent i t y) = @_;
 i f (def i ned($Sendmai l Mac r os { ' aut h_aut hen' })) {
 r et ur n;
 }
 # Sender i s not aut hent i cat ed
 # Run SpamAssassi n, et c. . .
}

� Use mi medef ang's - a option to pass
additional macros.

142

Performance
� A poorly-tuned MIMEDefang setup will

be very slow.
� A well-tuned setup will be slower than

plain-vanilla Sendmail, but still process
a respectable volume of mail.

� I'll present tips for tuning your
MIMEDefang setup.

143

Use Embedded Perl
� When the multiplexor starts a new

slave, it does this by default:
� set up pipes for the slave
� f or k
� execve perl mimedefang.pl

� The overhead of creating a slave is
quite high. In addition, slaves cannot
share any data memory.

144

Use Embedded Perl
� With the multiplexor's -E option, we

embed a Perl interpreter right into the
multiplexor. On startup, it reads and
initializes the filter. Then when it needs
a new slave:

� set up pipes
� f or k

� There is no execve overhead.
� Perl initialization done once instead of

once per slave-activation.
� Perl slaves can share some data

memory.

145

Embedded Perl Caveats
� Data-page sharing is not that helpful because

of Perl's reference-counting implementation.
Accessing even “read-only” data changes the
memory and results in page copies. :-(

� Although I followed the perlembed man page
religiously, the code fails on some platforms.
MIMEDefang's configure script will detect
whether or not it's safe to use embedded Perl.
Help from Perl gurus???

� On platforms that don't support embedded
Perl, the -E option is ignored.

146

Use Good Hardware
� Obvious first step: Use fast hardware with

lots of memory.
� In our lab, we benchmarked a dual-Xeon at

2.6GHz with 1GB of RAM running Linux. It
processed about 13 messages/second
using SpamAssassin and Clam AntiVirus.
This is about 1.1 million messages/day.

� However, this was under ideal conditions:
Sender was on the same fast LAN as
receiver. In real world, expect 35-60% of
this performance.

147

Disks
� MIMEDefang spools messages into

/ var / spool / MI MEDef ang. This data does
not need to survive a crash; use a RAM disk,
especially on Solaris.

� Do not be tempted to use a RAM disk for
/ var / spool / mqueue! Your machine will be
fast, but dangerous.

� Use fast disks. Consider a separate disk for the
Sendmail queue. Consider a separate disk for /
var / l og (or log to a remote loghost.)

148

Miscellaneous
� On systems that support it, have sysl og

log asynchronously. This cuts disk I/O
tremendously.

� If you can avoid calling SpamAssassin,
avoid it! Write your filter to call
SpamAssassin only as a last resort if
message hasn't been rejected for some
other reason.

� Avoid network tests (RBL, DCC, etc.) if
possible. Network latencies can cause
processes to pile up and kill the machine.
Consider local mirrors if you must use
network tests.

149

Storing State between
Callbacks

� Successive callbacks for a given
message can occur in different Perl
slaves.

� However, in all cases, the current
working directory is the same for a given
message. You can store state in files in
the current directory.

� If your MIMEDefang spool is on a RAM
disk, this is relatively cheap.

150

Invoking MIMEDefang
� Consult the man pages for all the gory

details. We'll cover some command-line
options here.

� To invoke MIMEDefang, you first start
the mi medef ang program, and then
mi medef ang- mul t i pl exor .

� Each program has its own command-
line options.

151

Some mi medef ang Options
� - U user – Run as user, not root. Mandatory.
� - p connection – Specify milter socket.
� - m socket – Specify multiplexor socket.
� - P pidfile – Write PID to pidfile after becoming

daemon.
� - C – Conserve file descriptors by not holding

descriptors open across Milter callbacks. On busy
Solaris servers, this might be required. Also, on busy
Solaris servers, use ul i mi t - n to increase number of
file descriptors per process to 1024 from 256. (The
Milter library uses sel ect () internally; it won't handle
more than 1024 descriptors on 32-bit Solaris systems.)

� - T – Log the filter times.

152

Some multiplexor Options
� - U user – Run as user, not root. Mandatory.
� - s socket – Specify multiplexor socket.
� - a socket – specify an “unprivileged” socket. The

mutliplexor will only accept safe requests on this socket
(for example, l oad, st at us , etc.) and not unsafe ones
(r er ead, scan, etc.) This lets unprivileged users
monitor performance.

� - N socket – listen for Sendmail SOCKETMAP
requests.

� - O socket – socket for notification messages.
� - p pidfile – Write PID to pidfile after becoming

daemon.
� - X secs – run a 'tick' request every secs seconds.

A socket may be specified using one of three forms:

/path/to/socket A UNIX-domain socket.

i net : portnum A TCP socket bound to portnum on 127.0.0.1.

i net _any : portnum A TCP socket bound to portnum on the wildcard
address.

For the - s option, only the UNIX-domain type is allowed.

153

Multiplexor Tuning Options
� - m minSlaves – Try to keep minSlaves Perl slaves running at all

times.
� - x maxSlaves – Never allow more than maxSlaves to be running

at the same time.
� - r maxRequests – Kill a slave after it has processed

maxRequests requests.
� - i idleTime – Kill off excess slaves that have been idle for

idleTime seconds.
� - b busyTime – Kill off a slave (and tempfail the mail) if it takes

longer than busyTime seconds to process a request.
� - w waitTime – Wait waitTime seconds between starting slaves

unless mail volume asks for slaves faster.
� - W waitTime – Wait waitTime seconds between starting slaves no

matter what.
� - E – Use embedded Perl interpreter. Always use this option!

154

Multiplexor Tuning Options
� - R maxRSS – Limit resident-set size of slave filter processes

to maxRSS kB. (Not supported on all operating systems.)
� - M maxMem – Limit total memory space of slave filter

processes to maxMem kB. Suppported on Linux and most
modern UNIX systems.

� - q queueSize – If all Perl slaves are busy, allow up to
queueSize requests to queue up until a slave becomes free.
 By default, no queueing is done (queueSize is zero.)

� - Q queueTimeout – If a request is queued for more than
queueTimeout seconds before a slave becomes free, fail the
request.

� Normally, if all slaves are busy, a request fails. Queuing
requests allows those SMTP transactions that are underway
to have a better chance at completing. New SMTP
transactions are tempfailed because mi medef ang always
issues a f r ee request at connection time.

155

Multiplexor Logging Options
� - l – Log anything Perl slaves put on STDERR

to syslog. Highly recommended.
� - t filename – Log statistical information to

filename.
� - T – Log statistical information using syslog(3).
� - Y label – Set syslog label to label.
� - S facility – Set syslog facility to facility.
� - L interval – Log slave status every interval

seconds.

156

Policy Suggestions
� Don't notify senders if you find a virus.

Most viruses fake sender addresses.
We suggest discarding viruses.

� Don't add silly disclaimers to outgoing
mail. Their legal status is doubtful, but
their annoyance factor is undisputed.

� Train users not to send HTML mail (or
even enforce it.) Spammers use many
silly HTML tricks to evade content-filters;
non-HTML mail is much more likely to
go through filters unmolested.

157

Policy Suggestions (2)
� Don't attempt tarpitting with

MIMEDefang. Special ratware can run
thousands of concurrent SMTP
sessions, and you'll hurt your own server
more than you hurt spammers.

� Be wary of DNS RBL's. They can be
effective, but can cause tremendous
collateral damage.

158

Conclusions
� MIMEDefang gives you the power of Perl

to filter, slice and dice your e-mail.
� Use the power wisely!
� Participate in the MIMEDefang

community: http://www.mimedefang.org
� Visit Roaring Penguin Software at Booth

#21.
� And have fun.

